
How to train Transformers
effectively
Shariq
Peter Wonka Reading Group - 9/16/2021
VCC

What kind of data works best?

● Traditionally
○ Long proven record on tokenized / quantized data - mostly language

■ Sequential

■ Token Sets

■ Any data that can be quantized via a fixed-size finite dictionary of embeddings (vocabulary)

● More recently
○ Real valued sequences / sets of vectors - Images / Videos

○ DETR, ViT, DEiT etc

Why is it difficult? Skip connections: A necessary evil

● Pure Attention loses rank doubly exponentially with depth! [1]

● What counteracts rank collapse?
○ Skip connections are crucial

○ MLPs help

● Skip connections amplify small parameter perturbations = Unstable training [2]

[1] Dong, Y., Cordonnier, J.B. and Loukas, A., 2021. Attention is not all you need: Pure attention loses rank doubly exponentially with depth. arXiv preprint arXiv:2103.03404.
[2] Liu, L., Liu, X., Gao, J., Chen, W. and Han, J., 2020. Understanding the difficulty of training transformers. arXiv preprint arXiv:2004.08249.

Training tips - 1 : Optimization

● Vanilla SGD DOES NOT work
● Use SGD with LR schedules
● More preferably use Adam / AdamW with LR schedules
● Warmup is essential!

○ Start small e.g. initial lr = 5e-5
○ warmup + linear or cosine decay
○ OneCycleLR generally works good enough

● Incase of diverged training, Use gradient clipping (e.g. max_grad_norm = 1)

Training tips - 2 - Design

● Model size : Start small but scale up to highest possible
○ Use smaller models first (e.g. layers = 2) for faster debugging.
○ Scale up eventually as much as you can, according to dataset size.

● Batch size : Start with highest possible

● For big datasets: Use as many GPUs as you can for faster results
○ e.g. one 8-GPU experiments one after another > two 4-GPU exps in parallel > eight 1-GPU exps in parallel

Training tips - 3 : ViT

● Lack of inductive bias (vs CNNs) = Extremely data hungry = Massive compute

● Transfer Learning is always the better option
○ Pretrained ViT, DeiT

● Introduce CNNs to form hybrids
○ CNN layers for initial encoding

● Data augmentation > Label smoothing > Regularization

● Increasing Patch Size > Shrinking model size

Other comments

● Position encoding is important (optional if using CNNs)
○ Predefined sine-cosine ≈ Learned encodings

● Try using all the output embeddings for faster convergence even if only one is needed
○ E.g. softmax + pool

● Stay updated with the empirical findings that work

Thank you!
and keep taming transformers!

